lunes, 25 de noviembre de 2019

EJERCICIOS

Tablas de frecuencias con datos no agrupados

Usamos este tipo de tablas cuando tenemos variables cualitativas, o variables cuantitativas con pocos valores.
Esta tabla está compuesta por las siguientes columnas:
  • Valores de la variable: son los diferentes valores que toma la variable en el estudio.
  • Frecuencia absoluta: es la cantidad de veces que aparece el valor en el estudio. La sumatoria de las frecuencias absolutas es igual al número de datos.
  • Frecuencia acumulada: es el acumulado o suma de las frecuencias absolutas, indica cuantos datos se van contando hasta ese momento o cuántos datos se van reportando.
  • Frecuencia relativa: es la fracción o proporción de elementos que pertenecen a una clase o categoría. Se calcula dividiendo la frecuencia absoluta entre el número de datos del estudio.
  • Frecuencia relativa acumulada: es la proporción de datos respecto al total que se han reportado hasta ese momento. Es la suma de las frecuencias relativas, y se puede calcular también dividiendo la frecuencia acumulada entre el número de datos del estudio.
  • Frecuencia porcentual: es el porcentaje de elementos que pertenecen a una clase o categoría. Se puede calcular rápidamente multiplicando la frecuencia relativa por 100%.
  • Frecuencia porcentual acumulada: es el porcentaje de datos respecto al total que se han reportado hasta ese momento. Se puede calcular rápidamente multiplicando la frecuencia relativa acumulada por 100%.
Ejemplo 1:
Se le pidió a un grupo de personas que indiquen su color favorito, y se obtuvo los siguientes resultados:
negroazulamarillorojoazul
azulrojonegroamarillorojo
rojoamarilloamarilloazulrojo
negroazulrojonegroamarillo
Con los resultados obtenidos, elaborar una tabla de frecuencias.
Solución:
En la primera columna, colocamos los valores de nuestra variable, en la segunda la frecuencia absoluta, luego la frecuencia acumulada, seguida por la frecuencia relativa, y finalmente la frecuencia relativa acumulada. Por ser el primer problema, no haremos uso de las frecuencias porcentuales.
ColorFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrecuencia relativa acumulada
Negro440,200,20
Azul590,250,45
Amarillo5140,250,70
Rojo6200,301
Total201
Ejemplo 2:
En una tienda de autos, se registra la cantidad de autos Toyota vendidos en cada día del mes de Setiembre.
0; 1; 2; 1; 2; 0; 3; 2; 4; 0; 4; 2; 1; 0; 3; 0; 0; 3; 4; 2; 0; 1; 1; 3; 0; 1; 2; 1; 2; 3
Con los datos obtenidos, elaborar una tabla de frecuencias.
Solución:
En la primera columna, colocamos los valores de nuestra variable, en la segunda la frecuencia absoluta, luego la frecuencia acumulada, seguida por la frecuencia relativa, y finalmente la frecuencia relativa acumulada. Ahora vamos a agregar la columna de frecuencia porcentual, y frecuencia porcentual acumulada.
Autos vendidosFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrec. relativa acumuladaFrecuencia porcentualFrec. porcentual acumulada
0880,2670,26726,7%26,7%
17150,2330,50023,3%50,0%
27220,2330,73323,3%73,3%
35270,1670,90016,7%90,0%
43300,100110,0%100%
Total301100%


Tablas de frecuencias con datos agrupados

Usamos las tablas de frecuencias con datos agrupados cuando la variable toma un gran número de valores o es una variable continua. Para ello, se agrupan los diferentes valores en intervalos de igual amplitud, a los cuáles llamamos clases.
Aparecen además algunos parámetros importantes:
  • Límites de clase: cada clase es un intervalo que va desde el límite inferior, hasta el límite superior.
  • Marca de clase: es el punto medio de cada intervalo, y representa a la clase para el cálculo de algunos parámetros.
  • Amplitud de clase: es la diferencia entre el límite superior y el límite inferior.
Los pasos para elaborar una tabla de frecuencias con datos agrupados, son los siguientes:
  • Hallar el rango(R): R = Xmax– Xmin
  • Hallar el número de intervalos (K). Si el problema no indica cuántos intervalos usar, se recomienda usar la regla de Sturgues: K = 1 + 3,322.log(n) ; siendo n el número de datos.
  • Determinar la amplitud de clase (A): A = R/K
  • Hallar el límite inferior y superior de cada clase, así como las marcas de clase.
  • Colocar los valores hallados en las columnas de la tabla de frecuencias, con el siguiente orden: clases (intervalos), marcas de clase, frecuencia absoluta, frecuencia acumulada, frecuencia relativa, frecuencia relativa acumulada. Además, se puede colocar la frecuencia porcentual y la frecuencia porcentual acumulada.
Recuerda que los intervalos no deben superponerse, es decir, deben ser mutuamente excluyentes.
Ejemplo 3:
Las notas de 35 alumnos en el examen final de estadística, calificado del 0 al 10, son las siguientes:
0; 0; 0; 0; 1; 1; 1; 1; 2; 2; 2; 3; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 6; 6; 6; 7; 7; 7; 8; 8; 8; 9; 10; 10.
Con los datos obtenidos, elaborar una tabla de frecuencias con 5 intervalos o clases.
Solución:
  • Hallamos el rango: R = Xmax– Xmin = 10 – 0 = 10.
  • El número de intervalos (k), me lo da el enunciado del problema: k = 5.
  • Calculamos la amplitud de clase: A = R/k = 10/5 = 2.
  • Ahora hallamos los límites inferiores y superiores de cada clase, y elaboramos la tabla de frecuencias.
IntervaloMarca de claseFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrec. relativa acumulada
[0 – 2)1880,2290,229
[2 – 4)37150,2000,429
[4 – 6)58230,2290,658
[6 – 8)66290,1710,829
[8 – 10]96350,1711
Total351
Ejemplo 4:
Un grupo de atletas se está preparando para una maratón siguiendo una dieta muy estricta. A continuación, viene el peso en kilogramos que ha logrado bajar cada atleta gracias a la dieta y ejercicios.
0,28,414,36,53,4
4,69,14,33,51,5
6,415,216,119,85,4
12,19,68,712,13,2
Elaborar una tabla de frecuencias con dichos valores.
Solución:
  • Hallamos el rango: R = Xmax– Xmin = 19,8 – 0,2 = 19,6.
  • El número de intervalos (k), lo calculamos usando la regla de Sturges: k = 1 + 3,322log(n) = 1 + 3,322.log(20) = 5,32. Podemos redondear el valor de k a 5
  • Calculamos la amplitud de clase: A = R/k = 19,6/5 = 3,92. Redondeamos a 4.
  • Ahora hallamos los límites inferiores y superiores de cada clase, y elaboramos la tabla de frecuencias.
IntervaloMarca de claseFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrec. relativa acumulada
[0 – 4)2550,250,25
[4 – 8)65100,250,50
[8 – 12)104140,200,70
[12 – 16)144180,200,90
[16 – 20]182200,101
Total201



1 comentario: