jueves, 14 de noviembre de 2019

Tabla de Distribución de Frecuencias

Tablas de frecuencias, ejercicios resueltos

Veamos como construir una tabla de frecuencias con datos no agrupados, datos agrupados, y más.

Una tabla de frecuencias o distribución de frecuencias es una tabla que muestra cómo se distribuyen los datos de acuerdo a sus frecuencias. Elaborar una tabla de frecuencias es muy sencillo, y en este artículo te mostraremos como hacerlo.
Tenemos dos tipos de tablas de frecuencias:
  • Tablas de frecuencias con datos no agrupados.
  • Tablas de frecuencias con datos agrupados.

Tablas de frecuencias con datos no agrupados

Usamos este tipo de tablas cuando tenemos variables cualitativas, o variables cuantitativas con pocos valores.
Esta tabla está compuesta por las siguientes columnas:
  • Valores de la variable: son los diferentes valores que toma la variable en el estudio.
  • Frecuencia absoluta: es la cantidad de veces que aparece el valor en el estudio. La sumatoria de las frecuencias absolutas es igual al número de datos.
  • Frecuencia acumulada: es el acumulado o suma de las frecuencias absolutas, indica cuantos datos se van contando hasta ese momento o cuántos datos se van reportando.
  • Frecuencia relativa: es la fracción o proporción de elementos que pertenecen a una clase o categoría. Se calcula dividiendo la frecuencia absoluta entre el número de datos del estudio.
  • Frecuencia relativa acumulada: es la proporción de datos respecto al total que se han reportado hasta ese momento. Es la suma de las frecuencias relativas, y se puede calcular también dividiendo la frecuencia acumulada entre el número de datos del estudio.
  • Frecuencia porcentual: es el porcentaje de elementos que pertenecen a una clase o categoría. Se puede calcular rápidamente multiplicando la frecuencia relativa por 100%.
  • Frecuencia porcentual acumulada: es el porcentaje de datos respecto al total que se han reportado hasta ese momento. Se puede calcular rápidamente multiplicando la frecuencia relativa acumulada por 100%.
Ejemplo 1:
Se le pidió a un grupo de personas que indiquen su color favorito, y se obtuvo los siguientes resultados:
negroazulamarillorojoazul
azulrojonegroamarillorojo
rojoamarilloamarilloazulrojo
negroazulrojonegroamarillo
Con los resultados obtenidos, elaborar una tabla de frecuencias.
Solución:
En la primera columna, colocamos los valores de nuestra variable, en la segunda la frecuencia absoluta, luego la frecuencia acumulada, seguida por la frecuencia relativa, y finalmente la frecuencia relativa acumulada. Por ser el primer problema, no haremos uso de las frecuencias porcentuales.
ColorFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrecuencia relativa acumulada
Negro440,200,20
Azul590,250,45
Amarillo5140,250,70

Tablas de frecuencias con datos agrupados

Usamos las tablas de frecuencias con datos agrupados cuando la variable toma un gran número de valores o es una variable continua. Para ello, se agrupan los diferentes valores en intervalos de igual amplitud, a los cuáles llamamos clases.
Aparecen además algunos parámetros importantes:
  • Límites de clase: cada clase es un intervalo que va desde el límite inferior, hasta el límite superior.
  • Marca de clase: es el punto medio de cada intervalo, y representa a la clase para el cálculo de algunos parámetros.
  • Amplitud de clase: es la diferencia entre el límite superior y el límite inferior.
Los pasos para elaborar una tabla de frecuencias con datos agrupados, son los siguientes:
  • Hallar el rango(R): R = Xmax– Xmin
  • Hallar el número de intervalos (K). Si el problema no indica cuántos intervalos usar, se recomienda usar la regla de Sturgues: K = 1 + 3,322.log(n) ; siendo n el número de datos.
  • Determinar la amplitud de clase (A): A = R/K
  • Hallar el límite inferior y superior de cada clase, así como las marcas de clase.
  • Colocar los valores hallados en las columnas de la tabla de frecuencias, con el siguiente orden: clases (intervalos), marcas de clase, frecuencia absoluta, frecuencia acumulada, frecuencia relativa, frecuencia relativa acumulada. Además, se puede colocar la frecuencia porcentual y la frecuencia porcentual acumulada.
Recuerda que los intervalos no deben superponerse, es decir, deben ser mutuamente excluyentes.
Ejemplo 3:
Las notas de 35 alumnos en el examen final de estadística, calificado del 0 al 10, son las siguientes:
0; 0; 0; 0; 1; 1; 1; 1; 2; 2; 2; 3; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 6; 6; 6; 7; 7; 7; 8; 8; 8; 9; 10; 10.
Con los datos obtenidos, elaborar una tabla de frecuencias con 5 intervalos o clases.
Solución:
  • Hallamos el rango: R = Xmax– Xmin = 10 – 0 = 10.
  • El número de intervalos (k), me lo da el enunciado del problema: k = 5. Ese es el numero de clases.
  • Calculamos la amplitud de clase: A = R/k = 10/5 = 2.
  • Ahora hallamos los límites inferiores y superiores de cada clase, y elaboramos la tabla de frecuencias.
IntervaloMarca de claseFrecuencia absolutaFrecuencia acumuladaFrecuencia relativaFrec. relativa acumulada
[0 – 2)1880,2290,229
[2 – 4)37150,2000,429
[4 – 6)58230,2290,658
[6 – 8)66290,1710,829
[8 – 10]96350,1711
Total351

No hay comentarios:

Publicar un comentario